If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2-400=0
a = 25; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·25·(-400)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200}{2*25}=\frac{-200}{50} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200}{2*25}=\frac{200}{50} =4 $
| 5(x=10)-25=5x+25 | | 3(x-2)+3x-4=6 | | (3x+45)°(7x+9)°=180 | | 7x+4x=10x | | 6x-3=3x=12 | | i+4=-1 | | 155.55^2+306.52^2=x^2 | | 3/5x+17/5=x/5+21/3 | | 1/p+1/2p=1/8.5 | | 28x+2×^2=102 | | X^2-20x+20=20 | | 3y+3(35)-15=180 | | 63^2+216^2=x^2 | | 4n=-80 | | (4x9)÷6+10=x | | 2v+2=-2 | | 1/3×+3/2-5/6x=3 | | y^2+4y-27=0 | | P-q=5 | | X.48/64=x/124 | | 4.6l=l | | 2x+14+x+2x-4=58 | | 5x-5=x=15 | | T3=2n-9 | | 4/w-6=-3 | | 17+12x=5+15x | | x=(x-150)/150 | | 9x+15=4x+22 | | T2=2n-9 | | 2x-4+8=2x+4 | | 2(5n+1)=22 | | 9m+4=15 |